Developing Tools for Creating-Maintaining-Analyzing Field Data

Shoju CHIBA
Reitaku University, Japan
schiba@reitaku-u.ac.jp

ELPR and the Research Unit B03

• Research Unit B03
 – “Digitization of linguistic data and information retrieval for the study of endangered languages”
 – Visited numerous leading institutions (in Japan or abroad)
 – Gathered information on the current states of applying IT technologies to the linguistic researches
 – Formed several projects to design tools for field linguists

What we’ve learnt and realized

• Growing interests in
 – making Multimedia data
 – web-publishing data
 – sharing and data
• Urgent needs of
 – freely usable fonts
 – tools for data creation
 – tools for searching data

The fwtk Project

• Develop a fieldworkers’ toolkit (fwtk) for the research of endangered languages
 – Enable to handle various linguistic annotations (grammatical description, phonetic transcription, etc)
 – Focusing on portability and usability

Roadmap

• Prototype software under development
 – Windows2000/XP as a target environment
 – Programming language: Tcl/Tk 8.3 and Microsoft C#

• Project URL:
 http://www.fl.reitaku-u.ac.jp/~schiba/fwtk/

• A Manual (together with the software) will be published as a publication of ELPR project
Technical Specifications

- Implementing Unicode (utf-8 transformation format) which enables transcription using IPA
- Using XML (eXtensible Markup Language) to describe structured data
 - Distinguish Phrasal, Sentence, Word Level
 - Enable to add various linguistic descriptions on each structural level

Technical Specifications (continued)

- IPA input support (software keyboard)
- Tools designed for textual analysis
 - Output format: KWIC (KeyWord In Context) and grep (shows the sentence matched)
 - Structure-sensitive search: specifying the field by main text or/and annotation(s) specified

Backgrounds

- Growing interest in multimedia
- Textual data still very important
- Word processor vs. plain text
 - Word processor: best for printing, but not “processing”
 - Application-dependent (“domain-specific”) format

Backgrounds (continued)

- How can we avoid word processor?
 - How to express IPA or other symbols? – encoding, input method
 - How to distinguish different levels of description? – original text, gloss, transcription, translation

Field Linguists’ Dilemma

Outer requirements: Plain Text
- Exchangeability
- Application independence

Inner motivations: Binary Format
- Expressive power
- Availability

Fundamental problem:
Lack of technological support for making structural data and utilizing it

Motivations

- Enriching editing environment for field linguists
 - Use of IPA symbols in the texts
 - Relevant encoding scheme
 - Unicode
 - Uniform way to store linguistic descriptions (grammatical/semantic/phonetic…)
 - Needs of a framework for structure description
 - XML
Solutions

- Using Unicode for storing various characters
- Using XML for storing data structure
- Providing tools for linguists
 - IPA Input support
 - Structure-sensitive search: searching sentences/paragraphs on the basis of meta-linguistic annotation

Using Unicode

- Advantages of Using Unicode
 - Multilingual
 - Full IPA symbols included
- Using utf-8 as the data format
 - Simple text format fully compatible with Unicode
 - Character codes of the basic characters preserved
 - Suitable for data exchange via network

Using Unicode (continued)

- Potential problems: Unicode incompatible with the other encoding schemes
 - Using Unicode incompatible tools
Solutions in fwtk:
 - Converting Unicode characters with Numeric Character Reference (&#xnnnnn;
 - Handling Unicode and its numeric references uniformly in search functions

Using XML (Extensible Markup Language)

- Simple or formatted plain text
- Viewing data with various formats
- Structure-sensitive text search and browse
- Selected data with a specific output format

Nature of Field Data

- Field data: structured
 - Word list
 - 2-dimensional: spread-sheet program (like Excel) available
 - Phrase list or narrative text
 - More complex: simple table-like format is not enough

Target Data Structure

- Complex data
 - Structural Level: Paragraph, Sentence, Word, etc.
 - Descriptive Level: Annotations
 - Grammatical annotation (Part of Speech, Lemma (basic form), Stem, Root, Grammatical Role)
 - Phonetic transcription
 - Descriptive memo, etc.
Target Data Structure (continued)

- Elements (indicate structural levels)
 - `<body>` text body`</body>`
 - `<div>` chapter`</div>`
 - `<p>` paragraph`</p>`
 - `<s>` sentence`</s>`
 - `<w>` word`</w>`

- Attributes (added to elements)
 - `<w phon="phonetic transcription" lemm="basic form" gram="grammatical description" memo="a note">WORD</w>`

Target Data Structure: Sample

```
<body>
  <div>
    <p>
      <s memo="speaker A">
        <w gram="POS" lemm="basic form" phon="IPA">WORD</w>
      </s>...
    </p>
    ...  
  </div>
</body>
```

Enriching the Working Environment

- Basic tasks should be included in one package (as one toolkit)
- Basic tools should be “Integrated”: each tool should include
 - same utilities
 - same user interface
- Utilities
 - IPA software keyboard available anytime
 - Editing
 - Searching

3 Basic Tools of `fwtk`

Simple or formatted plain text

Import XML data

Display Viewing data with various formats

Edit Structure-sensitive text search and browse

Analyze Selected data with a specific output format

Export

Data Creation

Data Management

Data Analysis

Software keyboard for inputting IPA symbols

- 3 Display modes
 - Tables implementing IPA Charts
 - Lists sorted by IPA number / Unicode order
 - Run anytime, anywhere: you can call the software keyboard freely in the program

Structure-Sensitive Data View: 3 Modes

1. XML Source View
 - Shows the full XML data
 - Suitable for editing text and XML tags (elements and attributes)
2. Structural (Data) View
 - Selects a structural level
 - Lists the elements and their attributes on the level selected
3. Main Text View
 - Shows the text without XML tags
 - Browses Word Level attributes with mouse
Structure-Sensitive Search/Textual Analysis

- Basic requirements for text search
 - Regular expression
 - Elaborated search method for each display mode
 • Keep the output format identical
 • Enable to specify the search field by Element/Attribute

- Tools for detailed textual analyses on the Main Text View
 - Enhanced grep
 - Enhanced kwic

Remaining Problems

- Full Implementation of Unicode is still under way
 - Implementation level of Unicode varies: Developing Unicode-ready programming is still a highly complex and demanding task.
 - “Dynamic Composition” challenge: combined characters with multiple diacritical marks are open-ended. Printing/Displaying/Searching
 - Dazzling principles of Unicode
 • Unification
 • Equivalent character sequences
 • Visual ambiguity

- Refining algorithm: search mechanism and XML parsing process still need to be improved.

Things to Do

- Customize data structure or Implement popular data formats: TEI on XML, for example
 - Conversion
 - Data creation
 - Export
- Uniform ways to access XML data
 - Using XML parser for a more efficient data parsing
 - Using XSLT to extract/display data
- Establish a way to customize functions or to add plug-in tools

Perhaps Most Important (?)
Give this software a nice name!

Summing Up: a Major Drift

Multimedia

Textual

Efficient Tools

Freely Usable Font

Data published on the Web/CD-ROM

Printable, but difficult-to-process Data

Data published on the Web/CD-ROM

Printed Data

Exchangeable Digitalized Data

Printable, but difficult-to-process Data

Data published on the Web/CD-ROM

Printed Data

Freely Usable Font

Efficient Tools

Conclusion